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Abstract
Statistical mechanical expressions are derived for atom–vacancy exchange
frequencies in a crystalline insulator with a gradient of temperature and for
the heat flux associated with such exchanges in an isothermal system. The
associated Onsager reciprocal relation is verified. A time correlation function
expression is thus identified for the heat of transport, q∗, associated with a single
atom–vacancy exchange. Here q∗ is defined as in standard kinetic theories of
non-isothermal matter transport in crystals. The expression for q∗ is compared
with an earlier one derived by Gillan through a calculation of the heat flux
associated with an atom–vacancy exchange in an isothermal system. There are
differences but numerical results from molecular dynamics simulations will be
close when the fraction of unsuccessful jump attempts is small.

PACS numbers: 05.60.-k, 66.30.-h

1. Introduction

The formalism of non-equilibrium thermodynamics provides the standard phenomenological
framework for the interpretation of experiments on matter transport in crystals with temperature
gradients [1, 2]. Within this formalism a key parameter for each chemical species is its heat
of transport. By virtue of the Onsager reciprocal relations the heat of transport not only
characterizes part of the flux of the species that is proportional to the temperature gradient
but is also the coefficient of proportionality between the heat flux and the atomic flux of the
species in an isothermal system. This remarkable property means that there are two possible
routes to a molecular-level calculation of the heat of transport.

Little progress towards a molecular theory of thermal diffusion in solids was made until
Gillan [3] provided a formal expression, suitable for evaluation through molecular dynamics
simulations, for the heat of transport associated with an atom–vacancy exchange in an insulator.
A zero-temperature illustration of such a calculation was soon made [4] and it was also
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shown [3, 5] how the expression could be made the basis of analytical calculations. Perhaps
because the demands on computing time are heavy, it is only recently that the expression has
been used for detailed finite-temperature simulations. Jones et al [6] have made molecular
dynamics simulations for vacancy migration in solid argon at 30–60 K and determined the
heats of transport associated with argon and solute atom jumps. Further simulations based
on the Gillan formula are in progress for these and other systems (Grout and Lidiard, private
communication 2000, Jacobs and Rycerz, private communication 2000). In the systems of
interest the activation energies are large compared with kT and consequently defect jumps
would rarely be observed on the timescale of a standard molecular dynamics simulation. The
essential feature of Gillan’s formulation is that it allows the use of a constrained molecular
dynamics technique [7, 8], which is far more efficient.

The derivation of the Gillan formula follows the isothermal route and is based on the
calculation of the heat flow associated with an atom–vacancy exchange in an isothermal system.
It is not exact [3] but the derivation is highly plausible for systems where successive vacancy
jumps are so far separated in time as to be dynamically independent, as will be the case when
activation energy barriers are large compared with kT . In view of the recent interest in the
heat of transport it seems timely to look at an analysis which makes closer contact with more
recent formulations of the statistical mechanics of activated processes and also examines both
calculation routes.

Most theoretical calculations of jump rates in isothermal solids have been made within the
framework of the absolute rate theory (transition state theory) as formulated by Vineyard [9].
The rate theory uses equilibrium statistical mechanics to calculate the rate at which an
appropriate reaction coordinate, ξ , reaches a critical value with a velocity, ξ̇ , of the correct
sign to take the jumping atom towards its new site. The rate formula so derived is sometimes
multiplied by a factor (the transmission coefficient) to correct for so-called unsuccessful
jumps in which the reaction velocity subsequently changes sign and the atom returns to
the vicinity of its original site without completing the attempted jump. The calculation
of the transmission coefficient and the pursuit of formulations of rate processes which are
firmly based in non- equilibrium statistical mechanics remained largely in abeyance until
the advent of molecular dynamics simulations. An influential starting point has been work
of Chandler [10], which generalized and expanded the time correlation function (TCF)
approach to chemical reaction rate constants [11]; there are several reviews of activated
processes from this point of view [12–14]. This newer framework has subsequently begun
to appear in calculations of defect migration rates in isothermal systems [8, 15]. Here we
shall extend this TCF approach to the heat of transport by obtaining formal expressions
for the jump frequency for atom–vacancy exchange in a non-isothermal system and for
the heat flux associated with an isothermal exchange. Our result for the heat of transport,
like Gillan’s [3], is based on classical statistical mechanics and is limited to an insulator
in which the concentration of vacancies is very small so that only single independent
vacancies need be considered. Extension to the simple interstitial mechanism would be
straightforward.

We begin by describing in section 2 a simple phenomenological model defined in terms of
site occupancies, atom–vacancy exchange frequencies and the kinetic equation which connects
them. We also summarize how the effect of a temperature gradient on a jump frequency is
usually parametrized. In the following section we establish a statistical mechanical analogue
for the kinetic equation. Expressions for jump frequencies in systems both without and with a
gradient of temperature are determined in section 4 by comparing the phenomenological and
statistical mechanical expressions. The expression for the heat of transport is then discussed
and compared with the result of Gillan [3].
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2. The phenomenological model

Attention will be focused on two nearest-neighbour sites,A andB, one vacant and one occupied
by an atom. The atom occasionally makes an activated jump from one site to the other. We
assume, as is usually done in such discussions, that barriers have been introduced to prevent
other atoms jumping into the vacant site. Let us suppose that site A is on lattice plane x and
site B is on the plane x + a. The loss–gain equation for the occupancy of site A is

dpA (t)

dt
= −wα+pA(t) + wβ−pB(t) (2.1)

in which pA(t) is the probability that the atom is localized at site A at time t and w denotes a
jump frequency of the atom. The jump frequency subscripts α and β allow for the possibility
that even in an equilibrium system jumps of the atom from A to B and from B to A may have
different frequencies and therefore be of different ‘types’, α and β, because of an asymmetry
in the surroundings of the two sites. (An example of this distinction occurs for a dilute alloy
when a host atom makes a jump which changes the separation of the vacancy from some
nearby solute atom whose presence influences the jump frequency.) The subscript labels + and
− signify that the jump takes the atom in the positive or negative direction along the x-axis,
respectively. Since the sum of the probabilities pA and pB is unity, equation (2.1) can be
solved; the result is

pA(t) =
(
pA(0)− wβ−

λ±

)
e−λ±t +

wβ−
λ±

(2.2)

where

λ± = wα+ + wβ−. (2.3)

Jump frequencies are always functions of local thermodynamic variables but if the system
is not at thermodynamic equilibrium they can also depend on the gradients of these variables.
Following Howard and Manning [16], we then write a jump frequency wγ± as the value, wγ ,
for a type γ jump in a uniform system which is in the thermodynamic state for the plane x+a/2
midway betweenA andB, plus terms linear in gradients. When there is just a one-dimensional
temperature gradient along the x-axis but no other thermodynamic forces (such as gradients
of concentrations, stress or applied electrical potential) the expression is

wγ± = wγ (1 ± aq∗
γ∇xβ/2) (2.4)

where β is (kT )−1 and ∇x ≡ ∂/∂x. The parameter q∗
γ defined by equation (2.4) is called

the reduced heat of transport of a type γ jump. This name is used because, when the flux of
atoms is calculated by kinetic arguments, assuming for simplicity just one kind of atom, and
is compared with the expression for the flux assumed in non-equilibrium thermodynamics, it
is found that q∗ plays the role of the reduced heat of transport defined in the thermodynamic
theory. In the general case the heats of transport of the thermodynamic theory are functions of
the heats of transport for individual jumps defined in equation (2.4) and these functions have
to be determined by kinetic theories [16, 17].

The later comparison of the phenomenological model, as summarized by equations (2.2)–
(2.4), with the results of an approximate statistical mechanical treatment can be made only on
a timescale which is appropriate for both descriptions. Both the phenomenological and the
statistical descriptions do not hold for times less than some characteristic time τr; for times
shorter than τr a transient non-exponential decay will hold. On the other hand the statistical
expression will be valid only for times short compared with both the characteristic time τe for
an appreciable change in the occupancy of site A towards its equilibrium value and also with
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the much longer characteristic time for relaxation of the temperature gradient in a macroscopic
system. Therefore, similarly to [14], we introduce a timescale τ , such that

λ−1
± = τe � τ � τr (2.5)

and take the time derivative of equation (2.2) on this timescale:
dpA (t)

dt
= −λ±

(
pA(0)− wβ−

λ±

)
e−λ±t t∼τ−→ − λ±pA(0) + wβ−. (2.6)

The later approximate statistical description will, however, be valid only to terms linear in
deviations from thermodynamic equilibrium. Therefore, the expression, equation (2.4), for
jump frequencies in a temperature gradient is substituted into equation (2.6) and terms of second
order in deviations from thermodynamic equilibrium (i.e. terms proportional to �pA(0)∇xβ)
are neglected. The expression to be compared with the statistical treatment is then found to be

dpA (τ)

dτ
= −λ�pA(0)− a

2
wαpA(q

∗
α + q∗

β)∇xβ (2.7)

where

λ = wα + wβ (2.8)

�pA(0) = pA(0)− pA (2.9)

and pA(= wβ/λ) denotes the equilibrium probability.

3. Statistical mechanical treatment of the model

3.1. Reaction coordinate and site occupancy

We employ a reaction coordinate, ξ , that is a function of the position of the hopping atom
and some of its neighbours. The value ξ = 0 defines the saddle plane and we suppose that
ξ < 0 when the atom is in the potential well centred on site A. A more complete definition
of ξ is not unique [7]; an example is used in appendix A.4 in the course of estimating orders
of magnitude but it is not needed elsewhere. We define two step functions, θA and θB , which
divide the configuration space according to whether the atom is associated with siteA (ξ < 0)
or with site B (ξ > 0):

θA(ξ) = 1 ξ < 0

= 0 ξ > 0
(3.1)

θA(ξ) + θB(ξ) = 1. (3.2)

The average value at time t of any dynamical variable X(�) which does not depend
explicitly on time will be written as

X(t) =
∫

d�X(�)f (�, t) =
∫

d� f (�, 0)X(�, t) (3.3)

where � denotes the complete set of position and momentum coordinates of all the atoms. The
distribution function f (�, t) satisfies the Liouville equation

∂f (�, t)

∂t
= −iLf (�, t) (3.4)

where L denotes the Liouville operator. The formal expression for X at time t in terms of its
initial value X(�) is

X(�, t) = exp(iLt)X(�). (3.5)

The probability, pi(t), that the hopping atom is associated with site i is then given by

pi(t) = θi(t) i = A,B. (3.6)
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3.2. Local equilibrium

Our method of deriving a kinetic equation for the site occupancy θA(t) employs the idea of
a local equilibrium distribution, often used in establishing expressions for thermal transport
coefficients of fluids in the linear-response regime [18, 19]. The basic assumption is that for
small deviations from thermodynamic equilibrium the instantaneous state always differs only
slightly from a state of local equilibrium which can be described by a distribution function
constructed very similarly to that for a system at equilibrium. Although the state of the system
is very close to that described by the local equilibrium distribution function, this distribution
is not a solution of the Liouville equation and cannot be used to predict transport properties.
However, if we start off the ensemble with this distribution function at some instant we can
expect that it will evolve in a very short time into a function that predicts the correct fluxes of heat
and matter. That this procedure, due to Mori [20], gives correct results for calculating linear
response transport coefficients of fluids is confirmed by all other theories, see for example [21];
we assume that the same is true here.

We first outline the construction of a local equilibrium distribution function for a closed
constant-volume system, containing the two special sites A and B. We may suppose that the
information about the state of the system at some time t is provided in the form of the current
values of the ensemble averages of the internal energy density, the linear momentum density
and the number densities of the various species of atom at every point r in the system. We
denote byAm(�, r) the molecular expression for a typical local densityAm; the set of densities
is

Am = {H, {gα}, {na}, nhA, nhB} (3.7)

where H(�, r) is the energy density at r, {gα(�, r)} denotes the set of Cartesian components
(α = x, y, z) of the linear momentum density g(�, r), {na(�, r)} denotes the set of number
densities of the various atomic species (a = 1, 2, 3 . . .) and nhA(�, r) and nhB(�, r) are the
number densities for the hopping atom h when it is associated with the site A and with the site
B respectively. Here and elsewhere, the label a does not include species hA and hB. The use
of α to label both types of jump and Cartesian components will readily be distinguished by
the context.

Explicit formulae for the various densities are as follows. The energy density is

H(�, r) =
∑
i

δ(r − ri )ei(�) (3.8)

where ri and ei are the position and energy of atom i, respectively, and the summation is over
every atom in the system. For a pairwise intermolecular potential the expression for ei is

ei = p2
i /2mi + 1

2

∑
j �=i
u(rij ) (3.9)

where pi is the momentum and mi the mass of the atom, and u is a pair potential energy. The
expressions for the other densities are

g(�, r) =
∑
i

piδ(r − ri ) (3.10)

na(�, r) =
∑
i∈a
δ(r − ri ) (3.11)

nhi (�, r) = δ(r − rh)θi(�) i = A,B. (3.12)

In the last equation rh is the position of the hopping atom.
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The local equilibrium distribution function, f0(�, t), for the state at time t is constructed
by maximizing the entropy,

S(t) = −k
∫

d� f0(�, t) ln f0(�, t) (3.13)

subject to the constraints that f0 is normalized to unity and that the averages of the densities
calculated from f0 must equal the exact values, i.e.

〈Am(r)〉0t = Am(r, t) (3.14)

where 〈· · ·〉0t denotes an average over f0(�, t). The result is

f0(�, t) = Q0(t)
−1 exp

[
−

∑
m

∫
dr γm(r, t)Am(�, r)

]
(3.15)

in which the γm(r, t) and lnQ0(t) are Lagrange multipliers.
The expression for entropy found by substituting for ln f0 from (3.15) into (3.13) can

be used to determine an expression for the change in entropy due to infinitesimal changes
in the mean local densities; from this the multipliers can be identified [22] as functional
derivatives of the entropy, kγm(r, t) = δS(t)/δ〈Am(r)〉0t . These identities can be viewed as
generalizations to a non-equilibrium system of standard thermodynamic relations when the
following identifications are made:

γm = {β, {−βνα}, {−ζa},−ζhA,−ζhB} (3.16)

where

ζb = β(µb −mbv2/2) b = a, hA, hB. (3.17)

Here v(r, t) is the local centre of mass velocity (equal to 〈g(r)〉0t /M where M is the total
mass of the system), µb(r, t) is the local chemical potential of species b,mb is the mass of a b
atom and β(r, t) is [kT (r, t)]−1 where T (r, t) is the local thermodynamic temperature. These
identifications of the multipliers with local thermodynamic functions are standard, although
the detailed arguments leading to them vary slightly, see for example section 20.1 of [22] and
chapter 9 of [19].

For future use we note here the expression for an average over the local equilibrium
distribution function for some dynamical variable X(�) when there are only very small
deviations from thermodynamic equilibrium and the limit v = 0 is taken. In the expression for
f0(�, t) we first expand the thermodynamic functions γm(r) about their values γm ≡ γm(r0)

for a uniform system in the thermodynamic state corresponding to the midpoint r0 between
sites A and B, and take the linear approximation

γm(r, t) = γm(t) + (r − r0) · ∇γm(t). (3.18)

The final result, correct to first order in deviations from equilibrium, can then be written as

�X(t) ≡ 〈X〉0t − 〈X〉 = 〈δXδθA〉(ζhA(t)− ζhB(t))−
∑

m

〈δXδsm〉 · ∇γm(t) (3.19)

where

sm(�) =
∫

dr (r − r0)Am(�, r) (3.20)

and for any phase function X(�) we define

δX(�) = X(�)− 〈X〉. (3.21)

Here 〈· · ·〉 denotes an average over the equilibrium canonical ensemble distribution,

fe(�) = exp[−βH(�)]/Q (3.22)
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and Q is defined by the normalization of fe to unity. We introduce here the convention of
writing

X(�) =
∫

drX(�, r) (3.23)

for any density X(�, r) integrated over r. Densities are always written with an explicit r

argument.

3.3. Non-equilibrium distribution function

We begin by writing the exact distribution function as a sum

f (�, t) = f0(�, t) + f ∗(�, t) (3.24)

where f ∗ is zero at t = 0 and is defined by this equation at later times. Averages over f will
be written in a similar way as

X(t) = 〈X〉0t +X∗(t) (3.25)

where the term coming from the average over f ∗ is often called the irreversible part [19]. By
substitution of (3.24) into the Liouville equation and then solving for f ∗ we obtain

f ∗(�, t) = −
∫ t

0
e−iL(t−s)

(
∂

∂s
+ iL

)
f0(�, s). (3.26)

When the indicated operations are carried out the result is

f ∗(�, t) =
∫ t

0
ds e−iL(t−s)f0(�, s)

∑
m

∫
dr {δ0sȦm(�, r)γm(r, s)

+δ0sAm(�, r)γ̇m(r, s)} (3.27)

where, for deviations from the local equilibrium average at time t , we use the notation

δ0tX(�) = X(�)− 〈X〉0t . (3.28)

In equation (3.27) δ0sȦm replaces Ȧm in the as-derived result by virtue of equation (A.1) of
the appendix with X = 1.

A more convenient form of f ∗ for calculating transport coefficients is one which contains
the thermodynamic forces of the model (∇γm and [ζhA− ζhB]) rather than the thermodynamic
functions γm and their time derivatives. To obtain this we first note that the result of taking the
time derivative of Am can be written in the form of a conservation equation,

Ȧm(�, r) = −∇ · Jm(�, r) + Jrm(�, r) (3.29)

where, corresponding to equation (3.7), we use the notations

Jm = {JH , {Pα}, {Ja},JhA,JhB} (3.30)

Jrm = {0, 0, 0,−Jr, Jr}. (3.31)

For those densities Am for which Jrm is here defined as zero, the expressions for the flux
densities Jm are derived and summarized in, for example, ch 8 of [19]. (These are the flux JH
of energy, the component Pα (≡ P ·eα where eα is a unit vector in direction α) of the pressure
tensor P and the flux Ja of a atoms.) For the other densities, which refer to the hopping atom,
differentiation of the density, equation (3.12), with respect to t and a property of the delta
function yield

Jhi (�, r) = δ(r − rh)θi(�)ph/mh i = A,B (3.32)

Jr(�, r) = −δ(r − rh)θ̇A(�) = δ(r − rh)θ̇B(�). (3.33)
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The quantity Jr is the reactive flux associated with the activated hops between the two wells.
When equation (3.29) is used to eliminate Ȧm from the first sum in equation (3.27) and an
integration by parts over r is made on the terms containing −∇ · Jm then that sum takes the
desired form:∫

dr
∑

m

δ0sȦm(�, r)γm(r, s) =
∫

dr

{
δ0sJr(�, r)[ζhA(r, s)− ζhB(r, s)]

+
∑

m

δ0sJm(�, r) · ∇γm(r, s)

}
. (3.34)

A somewhat similar form can be found for the second sum in (3.27). Here we must first
eliminate γ̇m by using an identity, equation (A.5), derived in the appendix:

γ̇m(r, t) = −
∑

n

∫
dr′G−1

mn,0t (r, r
′)
(〈Ȧn(r

′)〉0t + Ȧ∗
n(r

′, t)
)

(3.35)

where the functions G are defined by the equation

Gmn,0t (r, r
′) = 〈δ0tAm(r)δ0tAn(r

′)〉0t (3.36)

and inverse functions G−1 are then defined by the equation

δmnδ(r − r′) =
∑

p

∫
dr′′G−1

mp,0t (r, r
′′)Gpn,0t (r

′′, r′). (3.37)

An identity, equation (A.2), derived in the appendix allows the local equilibrium average of
Ȧn appearing in equation (3.35) to be related to the thermodynamic forces:

〈Ȧn(r
′)〉0t =

∫
dr′′

{
〈δ0tAn(r

′)δ0t Jr(r
′′)〉0t [ζhA(r

′′, t)− ζhB(r
′′, t)]

+
∑

p

〈δ0tAn(r
′)δ0tJp(r

′′)〉0t · ∇r′′γp(r
′′, t)

}
. (3.38)

When equation (3.35) (with the local equilibrium average terms substituted from
equation (3.38)) is used to eliminate γ̇m from the second sum in equation (3.27) each term in
the result contains some terms in which the thermodynamic forces appear explicitly and others

in which the irreversible parts Ȧ∗
n appear. This lengthy expression, plus that in equation (3.34),

can be used to rewrite the earlier expression for the distribution function, equations (3.24)
and (3.27), as

f (�, t) = f0(�, t) +
∫ t

0
ds e−iL(t−s)f0(�, s)

∫
dr

{
δ0s Ĵr(�, r, s)[ζhA(r, s)− ζhB(r, s)]

+
∑

m

(
δ0s Ĵm(�, r, s) · ∇γm(r, s)−Nm,0s(�, r)Ȧ∗

m(r, s)
)}

(3.39)

where

Nm,0t (�, r) =
∑

n

∫
dr′ δ0tAn(�, r

′)G−1
nm,0t (r

′, r) (3.40)

φ̂(�, r, t) = φ(�, r)−
∑
n,p

∫
dr′

∫
dr′′ δ0tAn(�, r

′)G−1
np,0t (r

′, r′′)〈δ0tAp(r
′′)φ(r)〉0t

φ = Jm, Jr.

(3.41)

For each flux, φ, appearing in the conservation equations, equation (3.41) defines a
corresponding subtracted flux, φ̂. The relationship between the corresponding fluctuations,
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δ0tφ(�, r) and δ0t φ̂(�, r, t) defined in (3.28), is just equation (3.41) with the symbols φ and φ̂
everywhere replaced by δ0tφ and δ0t φ̂, respectively. In the absence of the hopping atom, and
hence of the reactive fluxes, (3.41) is equivalent to equation (25) of [23]. It will be convenient
to delay further comment on the role of the subtracted fluxes to the next section.

3.4. Irreversible parts of fluxes and the kinetic equation

According to equation (3.25) each flux is the sum of a local equilibrium part and an irreversible
part. The former is the convective contribution associated with the centre of mass motion of the
system relative to the fixed external axes used in defining the fluxes. As outlined in appendix A.2
these convective parts make no contribution to the entropy production, which is found to be the
spatial integral of a sum of products of the irreversible fluxes and the thermodynamic forces:

Ṡ = k

∫
dr

{
J ∗

r (r)[ζhA(r)− ζhB(r)] +
∑

m

J∗
m(r) · ∇γm(r)

}
. (3.42)

For a system with a linear temperature gradient and non-equilibrium occupancies of sites A
and B but with no other thermodynamic forces this becomes, in the limit v = 0 and correct to
first order in deviations from equilibrium,

T Ṡ = J∗
q · Xq + J ∗

r Xr (3.43)

where the thermodynamic forces are here defined by

Xq = −∇T/T Xr = −[µhB − µhA] (3.44)

and where

Jq(�) = JH (�)−
∑
b

hbJb(�)− (hhA − hhB)(rh − r0)θ̇A(�). (3.45)

Thus Jq can be identified as the microscopic expression for the heat flux in this system. In
deriving equation (3.43) it must be noted that the gradient of ζb = βµb contains a contribution
from the temperature gradient since

∇(βµb) = β∇T µb + hb∇β (3.46)

where ∇T is the spatial derivative taken with T constant and hb is the partial molecular enthalpy
of species b. Here and subsequently b = a, hA, hB.

Turning to the actual evaluation of the irreversible fluxes, we first obtain

φ∗(r, t) = δ0tφ(r) = δ0t φ̂(r, t) (3.47)

by using equations (3.25) and (3.28) for the first equality and (3.41) and (3.14) for the second.
The irreversible part of the flux can therefore be calculated as the average of the fluctuation of
the subtracted flux. Using equation (3.39), we then obtain

φ∗(r, t) =
∫ t

0
ds

∫
dr′

{
〈[eiL(t−s)δ0t φ̂(r, t)]δ0s Ĵr(r

′, s)〉0s(ζhA(r
′, s)− ζhB(r

′, s))

+
∑

n

〈[eiL(t−s)δ0t φ̂(r, t)]δ0s Ĵn(r
′, s)〉0s · ∇r′γn(r

′, s) + R∗(r, r′, t, s)
}

φ = Jm, Jr

(3.48)

where

R∗(r, r′, t, s) =
∑

n

〈[eiL(t−s)δ0t φ̂(r, t)]Nn,0s(r
′)〉0s

{
∇r′ · J∗

n (r
′, s)− J ∗

rn(r
′, s)

}
. (3.49)

The Liouville operator acts only inside the square brackets.



7450 A R Allnatt

Equation (3.48) provides a set of exact nonlinear equations for the fluxes which are similar
to equations of Wong et al [23] and Ramshaw [24] but contain reactive flux terms. To extract
useful approximate results some systematic expansion method is needed, as discussed in these
papers in the context of the transport properties of fluids. A simple procedure, sometimes
called [24] a naive Chapman–Enskog expansion in the fluid case, is to write the fluxes
as φ̄ = 〈φ〉0 + λφ∗ where λ is a ‘small’ parameter, and make an iterative solution. The
zeroth approximation is therefore 〈φ〉0 and the first approximation adds to this φ∗ calculated
from (3.48) with the irreversible parts of the fluxes set to zero, i.e. R∗ = 0 in (3.48). We
shall use this first approximation combined with two physical assumptions. First, we restrict
consideration to first-order deviations from thermodynamic equilibrium and to linear gradients
of the thermodynamic functions γm. The averages over the local equilibrium distribution
function in the TCFs appearing in (3.48) can therefore be replaced by equilibrium averages.
This replacement implies we have also taken the limit v = 0, as is required since the TCFs are
later associated with jump frequencies, which are by definition independent of the mean centre
of mass velocity. Second, it will be assumed that there is a range of times τ for which these
TCFs have decayed essentially to zero and that changes of the thermodynamic functions and
forces in the time 0 to τ are negligible. This is the τ timescale introduced in equation (2.5),
which comprises times longer than the characteristic microscopic relaxation time, τr, sufficient
for the TCFs to decay to zero and shorter than both the time, τe, for appreciable change in
the populations of sites A and B and also the longer time for change in bulk thermodynamic
properties.

The kinetic equation we seek is obtained by introducing these assumptions and
approximations into equation (3.48), putting φ = −Jr and integrating over r. For comparison
with section 2 we further assume that the only deviations from equilibrium arise from a
uniform one-dimensional temperature gradient along the x-axis and from non-equilibrium
site occupancies for sites A and B. The result is

−Jr(τ ) ≡ dθA (τ)

dτ
=

( ∫ τ

0
ds 〈 ˆ̇θA(s)eA · Ĵq〉

)
∇xβ −

( ∫ τ

0
ds 〈 ˆ̇θA(s) ˆ̇θA〉

)
[ζhA − ζhB]

(3.50)

where eA is a unit vector along the x-axis in the direction from site A to B and the t = 0
arguments on the thermodynamic functions have been dropped. Advantage has been taken
of the fact that, to first order in deviations from equilibrium, 〈θ̇A〉0t = 0, as follows from
equation (3.19) and the expectation that θ̇A is an odd function of momenta. It is shown in
appendix A.3 that the definitions of the subtracted fluxes appearing here reduce to

φ̂(�) = φ(�)− β
∫

dr g(�, r) · 〈g(r)φ〉〈ρ(r)〉−1 φ = θ̇A,Jq (3.51)

where 〈ρ(r)〉 is the mean mass density at r.
The approximations introduced after equation (3.49) are similar to those made in older

derivations of the Green–Kubo expressions for transport coefficients of chemically inert
fluids [25]. The simple expansion procedures in those theories were subsequently realized to be
unsatisfactory because of inconsistencies in treating macroscopic and microscopic dynamics
at each level of approximation ( [24, 26] and references therein). However, for the fluid case
the set of densities Am is restricted to the densities of energy, of linear momentum and of
the number of each chemical species; the spatial integral of each density is conserved. These
densities (or rather their Fourier transforms) can then be designated as ‘slow’ variables and
more satisfactory systematic expansion procedures can be introduced, see [24, 26, 27]. In the
present model the spatial integrals of the additional densities, nhA and nhB , associated with
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the reactive fluxes are not conserved quantities. Fortunately these densities can plausibly be
considered as slow variables like the others if the activation energy,�g, for each jump is large
compared with kT so that the rate of atom exchange between the two sites A and B is very
small. Indeed, Chandler [10], working in a different formal framework and considering an
isothermal system without macroscopic gradients, identified exp(−�g/kT ) as an expansion
parameter for the dynamical model. However, the development of a systematic expansion for
our model, for example along the general lines suggested in [24], seems not trivial and is not
attempted here.

The kinetic equation (3.50) and results derived from it, like the expressions for the transport
coefficients of chemically inert fluids [19], contain TCFs of subtracted fluxes φ̂ rather than
of the fluxes φ introduced through conservation equations. This comes as an automatic
consequence of retaining all contributions in the distribution function (3.39) that are linear
in the thermodynamic forces. In fact subtracted fluxes have two properties, following from
their definition (3.41), which are usually found and believed necessary [27, 28] for fluxes
appearing in TCFs associated with transport coefficients. They are orthogonal to fluctuations
in the densities of conserved quantities, i.e. 〈φ̂δAm(r)〉 = 0, and are of the form φ̂ = (1−P)φ
where P is a projection operator linear in the fluctuations δAm(r). The main point is that the
time integral from 0 to ∞ of 〈φφ(t)〉 diverges if φ has a conserved part but it is a reasonable
asumption that 〈φ̂φ̂(t)〉 does not [27]. Whether the difference between having φ̂ or φ is of
practical significance has to be determined for the particular TCF expression of interest. (An
example is provided by the tracer and collective diffusion coefficients of fluids. There each
φ is the sum of appropriate atom velocities and the corresponding φ̂ is constructed from it by
subtracting the velocity of the centre of mass from each atom velocity. The difference between
having φ̂ or φ is found [28] to be negligible for the tracer but not for a collective diffusion
coefficient.)

4. Results and discussion

4.1. Expressions for the jump frequency and the heat of transport

It is clear that before equation (3.50) can be compared with the phenomenological theory,
equation (2.7), the thermodynamic force (ζA−ζB)must be expressed in terms of�θA(0). The
relation needed is found from equation (3.19) to be

ζhA − ζhB = �θA(0)

〈(δθA)2〉 +
〈δθAeA · δs〉

〈(δθA)2〉 ∇xβ (4.1)

where

s(�) =
∫

dr (r − r0)

{
H(�, r)−

∑
b

nb(�, r)hb

}
. (4.2)

Comparison of the two equations then yields expressions for the isothermal jump frequencies
and the sum of the reduced heats of transport as canonical ensemble averages:

λ = wα/〈θB〉 = wβ/〈θA〉 =
∫ τ

0 dt 〈 ˆ̇θA(t) ˆ̇θA〉
〈(δθA)2〉 (4.3)

q∗
α + q∗

β = −2

a

∫ τ
0 dt 〈 ˆ̇θAeA · Ĵq(t)〉

wα〈θA〉 + 2h∗ (4.4)

where

h∗ = 1

a

[ 〈θAs · eA〉
〈θA〉 − 〈θBs · eA〉

〈θB〉
]
. (4.5)
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The stationary and time reversal symmetry properties of the TCFs [29] have been used to
obtain the form in equation (4.4).

Equation (4.4) gives only the sum of the two reduced heats of transport for jumps in
the two directions between sites A and B. This is not necessarily important since the exact
expressions [17] for the phenomenological coefficients contain only such sums. Nevertheless,
in order to make contact with earlier work, it is worth trying to resolve the expression into two
terms which can be assigned to the individual jumps. To do this we first define θ(ξ̇ ) as the
Heaviside step function, which is unity for ξ̇ > 0 and is zero for ξ̇ < 0. By substituting the
identity θ(ξ̇ )+θ(−ξ̇ ) = 1 and using equation (3.2) one can then write the TCF of equation (4.4)
as

−〈ˆ̇θAeA · Ĵq(t)〉 = 〈 ˆ̇θBθ(ξ̇ )eA · Ĵq(t)〉 + 〈 ˆ̇θAθ(−ξ̇ )eB · Ĵq(t)〉 (4.6)

where eB = −eA is a unit vector along the x-axis in the direction from site B to site A. We
associate the first contribution with the α jump and the second with the β jump. We also
associate half of the second term in equation (4.4) with the α jump and half with the β jump.
We can then write

q∗
α = 2

a

∫ τ
0 dt 〈 ˆ̇θBθ(ξ̇ )eA · Ĵq(t)〉

wα〈θA〉 + h∗. (4.7)

The expression for q∗
β needed to regain equation (4.4) can, as expected, be obtained from that

for q∗
α by replacing α by β, interchanging the labels A and B and replacing θ(ξ̇ ) by θ(−ξ̇ ).

4.2. Discussion of isothermal jump frequency and heat of transport

An examination in appendix A.4 of the isothermal jump frequency formula, equation (4.3),

shows that, for activation energy barriers large compared with kT , the subtracted flux ˆ̇θA can
be replaced by θ̇A. It is then straightforward to see that this expression is the same as that often
previously obtained in various equivalent forms for an isothermal activated process (see for
example [14] and references therein) by using Onsager’s regression of fluctuations hypothesis
rather than as here, employing an explicit non-equilibrium distribution function. The structure
of this result has been discussed [10, 12] and it has been shown that in the limit τ → 0+ it
reduces to the transition state theory expression for a jump frequency,

wα(TST) = 〈δ(ξ)ξ̇θ(ξ̇ )〉
〈θA〉 = 〈δ(ξ)〉〈ξ̇ θ(ξ̇ )〉

〈θA〉 . (4.8)

The exact expression for the jump frequency can then be written in a form we shall need below
as

wα = wα(TST)κα (4.9)

where the transmission coefficient κα defined by this equation can be determined by simulation,
see for example [8, 12].

When discussing the expression (4.7) for the reduced heat of transport we shall for
simplicity consider only the form obtained from it for use in molecular dynamics simulations.
In that case averages are taken over a restricted microcanonical ensemble in which the total
energy is kept constant and the total linear momentum is kept zero. The relation between
the TCF of two fluctuations in different ensembles is independent of t but care is needed
because the differences among averages in the different ensembles (‘ensemble corrections’)
are in general of the same order in the number of particles as the TCF itself [30–32]. The
detailed relation between canonical ensemble and molecular dynamics ensemble averages has
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been established by Wallace and Straube [31]. Applying equation (39) of their development
to equation (4.7) we find the ensemble correction is zero and obtain

q∗
α = 2

a

∫ τ
0 dt 〈θ̇Bθ(ξ̇ )eA · Jq(t)〉′

wα〈θA〉 + h∗ (4.10)

where 〈· · ·〉′ denotes an average in the molecular dynamics ensemble.
To compare this result with that of Gillan [3] we specialize the discussion to the case of

self-diffusion in a one-component crystal considered explicitly by him. His expression for
the reduced heat of transport, q∗

G, of an atom jumping from site A, the negative of the heat of
transport of the vacancy used by him, can be written

q∗
G = 2

a

∫ τ
0 dt 〈δ(ξ)ξ̇θ(ξ̇ )eA · JH (t)θB(τ )〉′

〈δ(ξ)〉〈ξ̇ θ(ξ̇ )〉 + hv + hat (4.11)

where hv is the enthalpy of formation of one vacancy and hat is the enthalpy of one atom. The
last term is a correction to the original result introduced by Jones et al [6]. The time correlation
part is more explicit than that in Gillan [3] but is equivalent to the procedure followed in using
his result for simulations by Jones et al [6], see also [33]. There the mean of the energy
flux JH · eA in the direction of the jump is calculated for various times t � 0 using initial
configurations sampled from δ(ξ) exp(−βU) and initial velocities from ξ̇ θ(ξ̇ ) exp(−βK),
where U andK denote the system potential and kinetic energy, respectively. This flux decays
to zero in 10–20 ps. The function θB(τ ) has been included in equation (4.11) because, in
practice, trajectories of unsuccessful jumps, in which the atom returns from B to A before the
end of the simulation, are rejected. For comparison, our expression in equation (4.10) reduces,
with the aid of equations (4.8) and (4.9) and the identity θ̇B = δ(ξ)ξ̇ , to

q∗ = 2

a

∫ τ
0 dt 〈δ(ξ)ξ̇θ(ξ̇ )eA · JH (t)〉′

〈δ(ξ)〉〈ξ̇ θ(ξ̇ )〉κ + h∗ (4.12)

where we have dropped the α label assuming that, as in the argon simulations, all jumps are
of the same type.

The TCF term in (4.12) differs from that in (4.11) both because the unsuccessful jumps
are not rejected and because the transmission coefficient for the isothermal jump must also be
calculated. If there are no unsuccessful jumps the two TCFs are the same. In practice, the
fraction of unsuccessful jumps found in simulations [6] of the heat of transport in argon at
30 K is quite small (about 7%). It does not seem easy to gauge without actual simulations the
character of the discrepancies between these two TCF expressions when there is a large fraction
of unsuccessful jumps. The remaining contributions in equations (4.11) and (4.12) are (hv+hat)

and h∗, respectively. It is shown in appendix A.5 that, for the present model, h∗ = (hv + hat)

for a static lattice model but if lattice vibrations are included then a simple interpretation of h∗

seems to be lacking. The difference between h∗ and (hv + hat) will presumably be small for
argon.

4.3. Onsager reciprocal relation

The kinetic equation, (3.50), from which we inferred the expression for the heat of transport
defined in section 2 has the form expected from the entropy production (equation (3.43) with
the temperature gradient restricted to the x-axis):

J ∗
r = LrrXr + LrqXq. (4.13)

Expressions for the phenomenological coefficients can be written by comparison with
equation (3.50). Analogous to the derivation of equation (3.50), the mean heat flux along
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the x-axis on the τ timescale can be calculated from the same distribution function (3.48) with
the same approximations. The result has the form

J ∗
q = LqqXq + LqrXr (4.14)

and it is found that Lqr = Lrq , thus verifying an Onsager reciprocal relation in this context.
In an isothermal system the heat flux along the x-axis is J ∗

q = (Lqr/Lrr)J ∗
r and use of

the results for the phenomenological coefficients then shows that (q∗
α + q∗

β − 2h∗)/2, the TCF
part of the expression (4.4) for (q∗

α + q∗
β)/2, is the coefficient of proportionality between the

heat flux Jq and the net matter flux, here defined as aJ ∗
r = −a dθ∗

A/dτ , between the two sites.
The analogue in Gillan’s theory is that (q∗

G − hv − hat), the TCF part of his reduced heat of
transport q∗

G, is the mean heat flux per atom jump.

5. Conclusion

The approach to the heat of transport in this paper improves on earlier work [3] in three main
respects: (i) an explicit non-equilibrium distribution function is used; (ii) an expression for
the jump frequency in a non-isothermal system is calculated as well as the heat flow in an
isothermal system; (iii) in the limit of a uniform isothermal system the standard expression
for jump frequency, previously obtained from the Onsager hypothesis about regression of
fluctuations, is reproduced.

An expression, equation (4.4), was found for the sum of the two reduced heats of transport
associated with atom–vacancy exchanges between a pair of sites. This was plausibly resolved
into an expression, equation (4.7), for the reduced heat of transport associated with one atom
jump. In the case of self-diffusion, the latter can be compared with an earlier expression due
to Gillan [3]. The TCF parts of the two expressions differ in their treatments of unsuccessful
jumps and, additionally, because the new expression contains the transmission coefficient of
the isothermal jump. These differences are negligible when the fraction of unsuccessful jumps
is very small but are difficult to estimate in other circumstances except by simulation. Our
reduced heat of transport also contains an equilibrium part h∗ where the earlier formulation
had (hv + hat), the sum of the enthalpy of formation of one vacancy plus the enthalpy of one
atom. The practical difference between these equilibrium parts is probably often small since
h∗ = (hv + hat) in a static-lattice approximation.
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Appendix

A.1. Identities associated with the nonequilibrium ensemble

There are two useful identities for the local equilibrium average of the time derivative of some
variable X. The first of these,

〈Ẋ〉0t =
∫

dr
∑

n

〈XȦn(r)〉0t γn(r, t) (A.1)
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can be obtained by shifting the Liouville operator in Ẋ = iLX from X to f0t and using
equation (3.15).

Equation (A.1) can also be written in an alternative form in which X and Ȧn are replaced
by their fluctuations, δ0tX and δ0t Ȧn(r), since all the additional terms vanish by application
of (A.1) with X = 1. Substitution for Ȧn from the conservation equation (3.28) into this
alternative form and integration by parts over r in the terms containing −∇ · Jn leads to an
expression containing the thermodynamic forces:

〈Ẋ〉0t =
∫

dr

{
〈δ0tXδ0t Jr(r)〉0t [ζhA(r, t)− ζhB(r, t)] +

∑
n

〈δ0tXδ0tJn(r)〉0t · ∇γn(r, t)

}
.

(A.2)

A useful identity for the time derivative of a local equilibrium average is readily found by
carrying out the differentiation using the form in (3.15) for the local equilibrium distribution
function:

∂〈X〉0t

∂t
= −

∑
n

∫
dr 〈δ0tXδ0tAn(r)〉0t γ̇n(r, t). (A.3)

In the particular case where X = Am(r) we then obtain, with the aid of equation (3.14),

∂〈Am(r)〉0t

∂t
= Ȧm(r, t) = −

∑
n

∫
dr′Gmn,0t (r, r

′)γ̇n(r
′, t) (A.4)

where the G functions are defined by equation (3.36). This relation may be inverted with the
aid of the definition of G−1 functions in equation (3.37) to obtain

γ̇m(r, t) = −
∑

n

∫
dr′G−1

mn,0t (r, r
′)Ȧn(r′, t). (A.5)

A.2. Entropy production

It follows from the definition in equation (3.13) that the rate of change of entropy is

Ṡ(t) = −k
∫

d�
∂f0(�, t)

∂t
ln f0(�, t). (A.6)

Substitution for the local equilibrium distribution function and some simplification yields

Ṡ(t) = −k
∫

dr
∑

m

γm(r, t)Ȧm(r, t) (A.7)

where equation (A.4) has been used to introduce Ȧm. When the latter is written as in
equation (3.25) as a sum of local equilibrium and irreversible parts it is seen that the local

equilibrium parts sum to zero (using equation (A.1) withX = 1). By substitution for Ȧm from
the conservation equation (3.29) and integration by parts over r for the terms containing the
divergence of the fluxes Jm one then obtains equation (3.42) for the entropy production.

A.3. The subtracted fluxes in equation (3.51)

The densities Am, equation (3.7), are of even parity in momenta except for the momentum
density components, gα , which are odd. Since the matrix elements Gmn, equation (3.36) with
0t subscripts deleted everywhere, are zero except when Am and An have the same parity in
momenta it follows that the matrices G and G−1 have a similar block form, for example

G =
[
G(e) 0

0 G(o)

]
(A.8)
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where the label e (o) signifies that the elements are constructed from densities that are of even
(odd) parity. Turning to equation (3.41) (with 0t labels omitted), we note that 〈δAp(r

′′)δφ(r)〉
is non-zero only whenAp is of odd parity (when we restrict attention to φ = Jq, θ̇A, which are
odd). After evaluation of the elements of G(o) and (G(o))−1 we finally obtain equation (3.51),
where 〈ρ(r)〉 = ∑

b mb〈nb(r)〉.

A.4. Effect of the distinction between subtracted flux and ordinary flux in the case of the
isothermal jump frequency

At t = 0 the TCF appearing in the isothermal jump frequency, equation (4.3), is reduced by
substitution of the definition (3.51) for the subtracted flux and some simplification to

〈( ˆ̇θA)2〉 = 〈(θ̇A)2〉 − 〈(�θ̇A)2〉 (A.9)

where �θ̇A stands for the second term in (3.51) and

〈(�θ̇A)2〉 = 〈θ̇A�θ̇A〉 = β

∫
dr |〈g(r)θ̇A〉|2〈ρ(r)〉−1. (A.10)

The velocity integrations can be carried out in the two terms on the right of (A.9) if we
substitute θ̇A = −ξ̇ δ(ξ) and take an explicit form for the reaction coordinate. Following [6]
and [8] we take the latter to have the form

ξ =
′∑
i

ai · ri (A.11)

where the primed summation is over the hopping atom and a set of its neighbours. Each vector
ai is a unit vector in the jump direction multiplied by a weight; the weights are chosen so that

′∑
i

|ai |2 = 1
′∑
i

ai = 0. (A.12)

After carrying out the velocity integrations the first term on the right of (A.9) is then reduced
to

〈(θ̇A)2〉 = (βµ)−1〈δ(ξ)〉 (A.13)

where the reduced mass µ is defined by

µ =
( ′∑

i

|ai |2/mi
)−1

. (A.14)

〈δ(ξ)〉 is the probability that the hopping atom is at the top of the barrier and is therefore
proportional to exp(−�g/kT ), where�g is the activation energy barrier. For the second term
in (A.9) we find

〈(�θ̇A)2〉 = 〈δ(ξ)〉2

β

′∑
i

′∑
j

ai · aj

∫
dr

[ 〈δ(ξ)δ(r − ri )〉
〈δ(ξ)〉

] [ 〈δ(ξ)δ(r − rj )〉
〈δ(ξ)〉

]
〈ρ(r)〉−1.

(A.15)

Each quantity in square brackets is the probability density that the relevant atom (i or j ) is at
r when the reaction coordinate is zero. This probability density for atom i, for example, will
be sharply peaked at some position r∗

i close to the position of i in a static-lattice calculation
of the transition state; for order of magnitude purposes we can approximate the probability
density as δ(r − r∗

i ). We then obtain

〈(�θ̇A)2〉 = β−1〈δ(ξ)〉2
′∑
i

|ai |2〈ρ(r∗
i )〉−1. (A.16)
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For the mass density we have

〈ρ(r∗
i )〉 =

∑
j

mj 〈δ(rj − r∗
i )〉 ≈ mi (A.17)

assuming that the relative probability of an atom other than i being at r∗
i is negligible. From

equations (A.13), (A.16) and (A.17), 〈(�θ̇A)2〉/〈(θ̇A)2〉 is therefore of the order of magnitude

of 〈δ(ξ)〉. The difference between using the subtracted flux ˆ̇θA and the flux θ̇A in evaluating
the TCF at t = 0 is therefore a term of relative order 〈δ(ξ)〉, which is negligible for barriers
large compared with kT . We assume that this remains true at later times at which the TCFs
differ significantly from zero.

A.5. The term h∗ in the heat of transport

For the self-diffusion model of section 4.2 the definition of h∗, equation (4.5), can be written
as

h∗ =
(
(ē − hat)

〈
(θA − θB)

∑
i

(ri − r0) · eA

〉

+

〈
(θA − θB)

∑
i

(ei − ē)(ri − r0) · eA

〉)/
(a〈θA〉)

(A.18)

where hat is the enthalpy per atom. We now restrict our attention to a static lattice model and
choose ē as the mean energy per atom of the corresponding perfect crystal, i.e. the crystal with
no vacancy. We assume that, as in argon, there is reflection symmetry in the plane passing
through r0 perpendicularly to the jump vector.

In the second term only atoms close to the vacancy have a non-zero value of (ei − ē)

in one or both of the initial- and final-state contributions (i.e. when they occur multiplied by
either θA or θB respectively in equation (A.18)) and hence make a finite contribution in the sum
over atoms. Considering the final-state contribution of a particular atom in this sum there is
always an atom in the sum which has an initial-state contribution with the same energy (ei− ē)
but whose position is translated by aeA from the first atom. The second term is therefore∑
i (ei − ē). A careful examination shows that the first term is (hat − ē) and hence that

h∗ = hat − ē +
∑
i

(ei − ē). (A.19)

If a vacancy is formed in a perfect lattice by removing an atom from the bulk to infinity
the change in energy is −2ē if the other atoms are frozen in position; when they are allowed
to relax to new equilibrium positions there is an additional change of energy

∑
i (ei − ē). If

the atom is now added back from infinity to the surface there is a further energy change, ē.
The total energy change when an atom is moved from the bulk to the surface is therefore
[−ē +

∑
i (ei − ē)], and this is the energy of formation of a vacancy in the static lattice model.

Hence h∗ = hat + hv for the static model.
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